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Abstract 

 
The intent of the present study is to employ the extended Kantorovich method for semi-analytical solutions of lami-

nated composite plates with arbitrary lamination and boundary conditions subjected to transverse loads. The method 
based on separation of spatial variables of displacement field components. Within the displacement field of a first-order 
shear deformation theory, a laminated plate theory is developed. Using the principle of minimum total potential energy, 
two systems of coupled ordinary differential equations with constant coefficients are obtained. The equations are 
solved analytically by using the state-space approach. The results obtained are compared with the Levy-type solutions 
of cross-ply and antisymmetric angle-ply laminates with various admissible boundary conditions to verify the validity 
and accuracy of the present theory. Also, for other laminations and boundary conditions that there exist no Levy-type 
solutions the present results are compared with those obtained by other investigators and finite element method. It is 
found that the present results have very good agreements with those obtained by other methods. 

 
Keywords: Extended Kantorovich method; Laminated composite plates; Arbitrary boundary conditions; First-order shear deformation 
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1. Introduction 

In recent decades, with the increasing application of 
composite laminated plates, the interest of more re-
searchers has been attracted to the analysis of this kind 
of structures. Through the works presented in this field, 
notably large numbers of them are devoted to analyti-
cal methods for bending and free vibration analysis 
(see, for example, [1-4]). However, most of the meth-
ods introduced in these works are restricted to analysis 
of laminated plates with simply supported edges and 
especially laminations (i.e., cross-ply and antisymmet-
ric angle-ply laminates). 

Up to now, only few theories have been presented 
that can analyze plates with more general laminations 
or boundary conditions. In fact, it can be said that hith-

erto the most popular analytical method for analysis of 
non-simply supported laminated plates has been the 
Levy method, which is able to analyze cross-ply and 
antisymmetric angle-ply laminates with two simply 
supported opposite edges. Numerous investigators 
have used the Levy method to solve the governing 
equations of various equivalent single-layer plate theo-
ries (e.g., see [5-9]).  

Employing the Levy solutions and method of su-
perposition, Timoshenko [10] studied deflection and 
bending moments for rectangular isotropic thin plates 
with all edges clamped, one edge or two adjacent 
edges simply supported and the other edges clamped, 
and one edge free and the others clamped. Taking the 
idea of Timoshenko [10], Bhaskar and Kaushik [11] 
presented an exact solution for symmetric cross-ply 
thin plates with any combination of simply supported 
and clamped edges. Their methodology was based on 
superposition of the Navier solution corresponding to 
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the applied transverse load and a number of double 
sine series solutions, equal to the number of clamped 
edges, each corresponding to the appropriate edge 
moment. Bhaskar and Kaushik [12] developed their 
previous work for analysis of unsymmetric cross-ply 
plates with clamped edges. They used the following 
superposition to produce the clamped boundary condi-
tions on the edges of a simply supported plate: 1) the 
applied load, 2) bending moments and in-plane normal 
forces applied along a pair of opposite edges, and 3) 
similar edge moments and forces acting on the other 
pair of opposite edges. Similarly, Umasree and 
Bhaskar [13, 14] studied symmetric cross-ply clamped 
laminated plates using first-order shear deformation 
theory (FSDT) and zig–zag type higher-order theory, 
respectively.  

Green [15] introduced a mathematical approach to 
obtain derivatives of a function represented by a Fou-
rier series that violates the boundary conditions, and 
hence one that cannot be differentiated further term-
by-term. By starting with a series solution for the dis-
placement function as for a simply supported plate, 
and by obtaining derivatives of this series using 
Green’s methodology, the problem of the plate with 
other boundary conditions may be reduced to a set of 
infinite equations in infinite unknowns. The series 
solution can be appropriately truncated depending on 
the degree of accuracy desired. Whitney [16] and 
Kabir and Chaudhuri [17] extended the methodology 
of Green [15] for thin symmetrically anisotropic and 
moderately thick cross-ply clamped laminated plates, 
respectively. Chaudhuri and Kabir [18] presented a 
similar work on transversely isotropic Mindlin plates. 
Also, recently Khalili et al. [19] used the described 
methodology for static and dynamic analysis of sym-
metric cross-ply laminated plates with different 
boundary conditions. They had to fulfill an elaborate 
mathematical procedure to obtain the unknown due to 
every set of boundary conditions on the edges of the 
plate. Kabir and Chaudhuri [20] reported a minor vari-
ant of Green’s approach wherein the assumed dis-
placement functions satisfy the clamped boundary 
conditions a priori; expansion of cosine functions in a 
sine series, or vice versa, as suggested by Green and 
Hearmon [21]. Chaudhuri and Kabir [22] extended 
their earlier work to derive a boundary-continuous-
displacement solution for an arbitrarily laminated 
clamped plate. They used FSDT and illustrated their 
results for a general laminate of [0°/60°] construction. 
A disadvantage of Green’s approach, besides the un-

certain nature of convergence of the series employed, 
is the larger number of unknown variables that one has 
to solve for – namely, the Fourier coefficients of the 
double series assumed for the displacements as against 
the coefficients of the single series assumed for the 
edge moments in the superposition approach. 

Vel and Batra [23] generalized the Eshelby–Stroh 
formalism [24] to study the three-dimensional defor-
mations of anisotropic laminated rectangular plates 
subjected to arbitrary boundary conditions at the edges. 
They satisfied the interface continuity and the bound-
ary conditions in the sense of Fourier series, which 
results in an infinite system of equations in infinite 
unknowns. The truncation of this set of equations in-
evitably involves some errors which can be minimized 
by increasing the number of terms in the series. How-
ever, Vel and Batra [23] presented the numerical re-
sults, only, for a cross-ply plate simply supported on 
two opposite edges and subjected to different sets of 
boundary conditions on the other edges and a clamped 
plate with [0°/90°/0°] and [45°/-45°/45°] laminations. 
Vel and Batra [25] simplified three-dimensional equa-
tions of linear elasticity to the case of generalized 
plane-strain deformations and solved them by the 
Eshelby-Stroh formalism to study the cylindrical 
bending of an anisotropic laminated plate with either 
both edges clamped or one edge clamped and the other 
simply supported or one edge clamped and the other 
free. 

Our purpose is to develop the extended Kantorovich 
method (EKM) [26] for bending analysis of laminated 
composite plates with arbitrary lamination and bound-
ary conditions. With the extended Kantorovich ap-
proach, it is assumed that a solution is in the form of 
either a product of two independent functions of prob-
lem spatial variables (e.g., f (x) and g (y) for a rectan-
gular plate or f (x) and g (θ) for a cylindrical panel) or 
a sum of products of independent functions of problem 
spatial variables. Taking this assumption along with an 
energy method, two coupled sets of ordinary differen-
tial equations, instead of one set of partial differential 
equations, are obtained. The coupled differential equa-
tions are solved in an iterative manner that starts by 
guessing a solution for a set of the equations. Then the 
solution of the other set may be derived analytically or 
numerically. Subsequently, the obtained solution is 
used as a beginning point to solve the former set of the 
equations. This iterative procedure continues until the 
solution is converged. A few papers have been pub-
lished on bending analysis of anisotropic plates and 
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shells by the use of the EKM. Dalaei and Kerr [27] 
utilized the EKM to generate a closed form approxi-
mate solution for the deflections of a clamped rectan-
gular orthotropic plate. They showed that the conver-
gence of the method is very rapid, in that the final 
form of their single-term solution is reached after only 
four iterations, and that the final results are independ-
ent of the initial choice. Aghdam and Falahatgar [28] 
presented a single-term solution for bending analysis 
of moderately thick rectangular symmetric cross-ply 
laminates with clamped edges subjected to a uniform 
distributed load. Recently, Abouhamze et al. [29] pre-
sented a similar work for thin symmetric cross-ply 
cylindrical panels with clamped edges subjected to 
three different loading conditions (uniform, linear and 
sinusoidal). In this study the multi-term version of 
EKM is conjugated to FSDT for static analysis of 
rectangular laminated plates with arbitrary boundary 
conditions subjected to transverse loadings. However, 
since the procedure used is simple and straightforward, 
it can be adopted in developing higher-order shear 
deformation and layerwise laminated plate theories. 
To check the validity and accuracy of the present me-
thod, three numerical examples are presented. The first 
contains an antisymmetric angle-ply laminated plate 
which has a Levy-type solution, the second concerns a 
cross-ply laminate, and the third contains a general 
laminated plate with arbitrary laminations and bound-
ary conditions. The comparison of the results with 
those obtained from the other methods shows the ex-
cellent accuracy of the present method.  
 

2. Formulation 

2.1 Displacement field and strains 

Consider a generally laminated plate as shown in 
Fig. 1 with a total thickness h, width b in the lateral 
(y-) direction, and length a in the longitudinal (x-) 
direction. It is assumed that the middle plane of the 
plate lies on the x-y plane of a Cartesian coordinate 
system. Here, in order to introduce the idea, the the-
ory will be developed within the framework of the 
first-order shear deformation theory [30], although the 
method is general and can be used within any shear 
deformation plate and shell theories. To this end, it is 
assumed that the displacement field of the plate may 
be presented as: 

 
( , , ) ( ) ( ) ( ) ( )i i i iu x y z u x u y z x yψ ψ= +  

  
Fig. 1. The plate geometry and coordinate system. 

 
( , , ) ( ) ( ) ( ) ( )i i i iv x y z v x v y z x yφ φ= +  
( , , ) ( ) ( )    1,2, ,i iw x y z w x w y i n= = K   (1) 

 
where, for the sake of brevity, the Einstein summation 
convention has been introduced – a repeated index 
indicates summation over all values of that index. In 
Eqs. (1) u (x,y,z), v (x,y,z), and w (x,y,z) represent the 
displacement components in the x, y, and z directions, 
respectively, of a material point initially located at 
(x,y,z) in the undeformed laminate. Also, ( ) ( )i iu x u y , 

( ) ( )i iv x v y , and ( ) ( )i iw x w y  denote the displacement 
of a point on the middle plane of the laminate along 
the x, y, and z directions, respectively, ( ) ( )i ix yψ ψ  
and ( ) ( )i ix yφ φ  are the rotations of a transverse nor-
mal about the y and x axes, respectively, and n is the 
total number of terms considered in the summation. 
When in the formulation process we take n≥2, the 
method is referred to as the multi-term Kantorovich 
approach and otherwise, it is termed the single-term 
Kantorovich method.

 
 

Upon substitution of the displacement field (1) into 
the linear strain-displacement relations of elasticity 
[31] the following strain-displacement relations will 
be obtained: 
 

0 ,x x xzε ε κ= +  0 ,y y yzε ε κ= +  0zε =  
0 ,yz yzγ γ=  0 ,xz xzγ γ=  

0
xy xy xyzγ γ κ= +   (2) 

 
where 
 

0
x i iu uε ′= , 0

y i iv vε ′=  

x i iκ ψψ ′= , y i iκ φφ′=  
0
yz i i i iw wγ φφ ′= + , 0

xz i i i iw wγ ψ ψ ′= +  
0
xy i i i iu u v vγ ′ ′= + , xy i i i iκ ψψ φφ′ ′= +

  
(3) 

 
In Eqs. (3) a prime indicates an ordinary derivative 
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with respect to the appropriate variable x or y. 
 
2.2 Equilibrium equations 

Using the principle of minimum total potential en-
ergy [31], 

 
δU + δV = 0  (4) 

 
which states that summation of the first variation of 
internal strain energy and the first variation of the 
potential of external loads equals zero; two sets of 
equilibrium equations and boundary conditions are 
obtained. If the functions iu , iv , iw , iψ , and iφ  
are assumed to be known, the first set of equilibrium 
equations can be shown to be: 
 

1: 0
i

ix
i xy

du
dx

δ − =
N N

 
2: 0

i
xy i

i y

d
v

dx
δ − =

N
N

 

1 1: 0
i

i ix
i xy x

d
dx

δψ − − =
M M Q

  
2

1: 0
i

xy i i
i y y

d
dx

δφ − − =
M

M Q
 

2
2: ( ) 0

i
ix

i y i
dw q x
dx

δ − + =
Q Q     1,2, ,i n= K   (5) 

 
where the generalized stress and moment resultants 
are defined as: 
 

{ }
{ }

{ }

1 2

1 2

1 2 1 2

0

Ti i i i i
x y xy xy

T i i i ii
x y xy xy
i i i iTi y y x x

x i y i xy i xy i
b

x i y i xy i xy i

y i y i x i x i

N u N v N u N v
M M M M dy
Q Q w Q Q w
ψ φ ψ φ
φ ψ

⎡ ⎤ ⎡ ⎤⎢ ⎥ ⎢ ⎥⎢ ⎥ = ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎣ ⎦⎣ ⎦
′ ′⎡ ⎤

⎢ ⎥′ ′= ⎢ ⎥
⎢ ⎥′⎣ ⎦

∫

N N N N N
M M M MM
Q Q Q QQ   (6) 

with  
 

0
( ) ( , )

b

i iq x q x y w dy= ∫   (7) 

 
where q (x,y) is the applied transverse load at z=-h/2. 
In Eqs. (6) the stress and moment resultants are: 
 

/ 2

/ 2
( , , , , ) ( , , , , )

h

x y xy y x x y xy yz xzh
N N N Q Q dzσ σ σ σ σ

−
= ∫  
/ 2

/ 2
( , , ) ( , , )

h

x y xy x y xyh
M M M zdzσ σ σ

−
= ∫

  
(8) 

The boundary conditions corresponding to Eqs. (5) 
consist of specifying the following quantities at the 
edges parallel to the y-axis (i.e., at x=0,a): 
 

Primary variables: iu , iv , iψ , iφ , iw  
Secondary variables: i

xN , 2
i

xyN , i
xM  

2
i

xyM , 2
i

xQ  i=1,2,…,n  (9) 
 

If, on the other hand, the functions iu , iv , iw , 
iψ , and iφ  are assumed to be known, then the sec-

ond set of equilibrium equations will be: 
 

1: 0
i

xy i
i x

d
u

dy
δ − =

N
N

 

2: 0
i

y i
i xy

d
v

dy
δ − =

N
N

 
1

1: 0
i

xy i i
i x x

d
dy

δψ − − =
M

M Q
 

2 1: 0
i

y i i
i xy y

d
dy

δφ − − =
M

M Q
 

2
2: ( ) 0

i
y i

i x i

d
w q y

dy
δ − + =

Q
Q    1,2, ,i n= K   (10) 

 
In the above equations the generalized stress and 
moment resultants are defined as: 

 

{ }
{ }

{ }

1 2

1 2

1 2 1 2

0

Ti i i i i
x y xy xy
i i i iTi

x y xy xy
i i i iTi y y x x

x i y i xy i xy i
a

x i y i xy i xy i

y i y i x i x i

N u N v N u N v
M M M M dx
Q Q w Q Q w
ψ φ ψ φ
φ ψ

⎡ ⎤ ⎡ ⎤⎢ ⎥ ⎢ ⎥⎢ ⎥ = ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎣ ⎦⎣ ⎦
′ ′⎡ ⎤

⎢ ⎥′ ′= ⎢ ⎥
⎢ ⎥′⎣ ⎦

∫

N N N N N
M M M MM
Q Q Q QQ   (11) 

 
with 
 

0
( ) ( , )

a

i iq y q x y w dy= ∫   (12) 

 
The boundary conditions corresponding to Eqs. (10) 
consist of specifying the following quantities at the 
edges parallel to the x-axis (i.e., at y=0,b): 

Primary variables: iu , iv , iψ , iφ , iw  

Secondary variables: 1
i

xyN , i
yN , 1

i
xyM  

i
yM , 2

i
yQ  i=1,2,…,n  (13) 
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2.3 Laminate constitutive relations 

The linear plane stress constitutive relations for the 
kth orthotropic lamina with respect to the laminate 
coordinate axes (see Fig. 1) are given by [30]: 

 
( )( ) ( )

11 12 16

12 22 26

16 26 66

kk k

x x

y y

xy xy

Q Q Q
Q Q Q
Q Q Q

σ ε
σ ε
σ γ

⎡ ⎤⎧ ⎫ ⎧ ⎫
⎢ ⎥⎪ ⎪ ⎪ ⎪=⎨ ⎬ ⎨ ⎬⎢ ⎥

⎪ ⎪ ⎪ ⎪⎢ ⎥
⎩ ⎭ ⎩ ⎭⎣ ⎦

 
( )( ) ( )

44 45

45 55

kk k
yz yz

xz xz

C C
C C

σ γ
σ γ

⎡ ⎤⎧ ⎫ ⎧ ⎫
=⎨ ⎬ ⎨ ⎬⎢ ⎥

⎩ ⎭ ⎩ ⎭⎣ ⎦   
(14) 

 
where ( )[ ] kQ  is the transformed reduced stiffness 
matrix and ( )k

ijC  (i,j=4,5) are the off-axis stiffness 
coefficients of the kth lamina. Upon substitution of 
Eqs. (2) into Eqs. (14) and the subsequent results into 
Eqs. (8), the stress and moment resultants are ob-
tained, which can be presented as follows: 
 

11 12 16 11 12 16

22 26 12 22 26

66 16 26 66

11 12 16

22 26

66

.

o
x x

o
y y

o
xy xy

x x

y y

xy xy

N A A A B B B
N A A B B B
N A B B B
M D D D
M Sym D D
M D

ε
ε
γ
κ
κ
κ

⎧ ⎫⎧ ⎫ ⎡ ⎤
⎪ ⎪⎪ ⎪ ⎢ ⎥
⎪ ⎪⎪ ⎪ ⎢ ⎥
⎪ ⎪⎪ ⎪ ⎢ ⎥⎪ ⎪ ⎪ ⎪= ⎢ ⎥⎨ ⎬ ⎨ ⎬

⎢ ⎥⎪ ⎪ ⎪ ⎪
⎢ ⎥⎪ ⎪ ⎪ ⎪
⎢ ⎥⎪ ⎪ ⎪ ⎪
⎢ ⎥⎪ ⎪ ⎪ ⎪⎣ ⎦⎩ ⎭ ⎩ ⎭

 0
44 452

0
45 55

y yz

x xz

Q A A
k

Q A A
γ
γ
⎧ ⎫⎧ ⎫ ⎡ ⎤ ⎪ ⎪=⎨ ⎬ ⎨ ⎬⎢ ⎥
⎪ ⎪⎩ ⎭ ⎣ ⎦ ⎩ ⎭

 

  (15) 

 
Here, k2 (=5/6) is the shear correction factor intro-
duced as in the first-order shear deformation plate and 
shell theories. Also ijA , ijB , and ijD  (i,j=1,2,6) 
denote the extensional stiffnesses, the bending-
extensional coupling stiffnesses, and the bending 
stiffnesses, respectively. These stiffnesses are given 
by: 
 

1 ( ) 2

1

( , , ) (1, , )

, 1,2,6

k

k

N z k
ij ij ij ijz

k

A B D Q z z dz

i j

+

=

=

=

∑∫
 

1 ( )

1
    , 4,5k

k

N z k
ij ijz

k
A C dz i j+

=

= =∑∫
  

(16) 

 
where N is the total number of layers. Upon substitu-
tion of Eqs. (2) into (15) and the subsequent results 
into Eqs. (6) and (11), the generalized stress resultants 
are obtained, which can be represented as follows: 

{ }
{ } [ ]{ }

i
ij

ji
ξ

⎧ ⎫
=⎨ ⎬

⎩ ⎭

N
A

M
 

{ } [ ]{ } , 1,2, ,i ij
j i j nη= = KBQ   

(17) 
 { }

{ }
[ ]{ }

i
ij

ji
ξ

⎧ ⎫⎪ ⎪ =⎨ ⎬
⎪ ⎪⎩ ⎭

N
A

M
 

{ } [ ] { } , 1,2, ,i ij
j i j nη= = KBQ   

(18) 

 
where 

 
{ } T

j j j j j j j j ju v u vξ ψ φ ψ φ′ ′ ′ ′= ⎡ ⎤⎣ ⎦  
{ } T

j j j j jw wη φ ψ ′= ⎡ ⎤⎣ ⎦   
(19) 

{ } T

j j j j j j j j ju v u vξ ψ φ ψ φ′ ′ ′ ′⎡ ⎤= ⎣ ⎦  
{ } T

j j j j jw wη φ ψ′⎡ ⎤= ⎣ ⎦   
(20) 

 
and the coefficient matrices [ ]ijA , [ ]ijB , [ ]ijA , 
and [ ]ijB  in Eqs. (17) and (18) are defined as: 
 

[ ] [ ] { }{ }( )0

b Tij
i j dyα ξ ξ⊗= ∫A

 
[ ] [ ] { }{ }( )0

b T
ij

ji dyηβ η⊗= ∫B   (21)
 

[ ] [ ] { }{ }( )0

a Tij
i j dxα ξ ξ⊗= ∫A

  
[ ] [ ] { }{ }( )0

a Tij
i j dxβ η η⊗= ∫B

  
(22) 

 
In Eqs. (21) and (22) [ ]α  and [ ]β  are: 

 

[ ]

11 12 16 16 11 12 16 16

22 26 26 12 22 26 26

66 66 16 26 66 66

66 16 26 66 66

11 12 16 16

22 26 26

66 66

66

.

A A A A B B B B
A A A B B B B

A A B B B B
A B B B B

D D D D
Sym D D D

D D
D

α

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

(23) 

[ ]
44 44 45 45

44 45 452

55 55

55.

A A A A
A A A

k
A A

Sym A

β

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

  

(24) 

 
It must be noted that the sign ⊗ used in Eqs. (21) and 
(22) is referred to as array multiplication of two ma-
trices.
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2.4 Governing equations of equilibrium 

The equilibrium equations in (4) and (9) can be ex-
pressed in terms of displacements by substituting the 
generalized stress resultants from (16) and (17). 
Hence, two sets of ordinary differential equations 
with constant coefficients will be obtained as follows: 

 
11 13 31 33 14 12

34 32 15 17 35

37 18 16 38 36

: ( ) (

) ( )

( ) 0

ij ij ij ij ij ij
i j j j j

ij ij ij ij ij
j j j j

ij ij ij ij ij
j j j j

u u u u v

v v

δ

ψ ψ

ψ φ φ φ

′′ ′ ′′+ − − + +

′ ′′ ′− − + + −

′′ ′− + + − − =

A A A A A A

A A A A A

A A A A A
 

41 43 21 23 44 42

24 22 45 47 25

27 48 46 28 26

: ( ) (

) ( )

( ) 0

ij ij ij ij ij ij
i j j j j

ij ij ij ij ij
j j j j

ij ij ij ij ij
j j j j

v u u u v

v v

δ

ψ ψ

ψ φ φ φ

′′ ′ ′′+ − − + +

′ ′′ ′− − + + −

′′ ′− + + − − =

A A A A A A

A A A A A

A A A A A  

51 53 71 73 54 52

74 72 55 57 75

77 33 58 56 78

76 31 34 32

: ( ) (

) ( )

( ) ( )

( ) 0

ij ij ij ij ij ij
i j j j j

ij ij ij ij ij
j j j j

ij ij ij ij ij
j j j

ij ij ij ij
j j j

u u u v

v v

w w

δψ

ψ ψ

ψ φ φ

φ

′′ ′ ′′+ − − + +

′ ′′ ′− − + + −

′′ ′− + + + −

′− + − − =

A A A A A A

A A A A A

A B A A A

A B B B
 

81 83 61 63 84 82

64 62 85 87 65

67 13 88 86 68

66 11 14 12

: ( ) (

        ) ( )

( ) ( )

( ) 0

ij ij ij ij ij ij
i j j j j

ij ij ij ij ij
j j j j

ij ij ij ij ij
j j j

ij ij ij ij
j j j

u u u v

v v

w w

δφ

ψ ψ

ψ φ φ

φ

′′ ′ ′′+ − − + +

′ ′′ ′− − + + −

′′ ′− + + + −

′− + − − =

A A A A A A

A A A A A

A B A A A

A B B B
 

43 23 41 21 44

42 24 22

:

( ) ( )

ij ij ij ij ij
i j j j j j

ij ij ij
j j i

w w

w w q x

δ ψ ψ φ φ′ ′ ′′− + − +

′+ − − = −

B B B B B

B B B
  (25)

 

and 
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12 14 37 35 17

15 36 38 16 18

: ( ) (

) ( )

( ) 0

ij ij ij ij ij ij
i j j j j

ij ij ij ij ij
j j j j

ij ij ij ij ij
j j j j

u u u u v

v v

δ

ψ ψ

ψ φ φ φ

′′ ′ ′′+ − − + +

′ ′′ ′− − + + −

′′ ′− + + − − =

A A A A A A

A A A A A

A A A A A  
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) ( )

( ) 0

ij ij ij ij ij ij
i j j j j

ij ij ij ij ij
j j j j

ij ij ij ij ij
j j j j

v u u u v

v v

δ

ψ ψ

ψ φ φ φ

′′ ′ ′′+ − − + +

′ ′′ ′− − + + −

′′ ′− + + − − =

A A A A A A

A A A A A

A A A A A  
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: ( ) (

) ( )

        ( ) ( )

( ) 0

ij ij ij ij ij ij
i j j j j

ij ij ij ij ij
j j j j

ij ij ij ij ij
j j j

ij ij ij ij
j j j

u u u v

v v

w w

δψ

ψ ψ

ψ φ φ

φ

′′ ′ ′′+ − − + +

′ ′′ ′− − + + −

′′ ′− + + + −
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A A A A A A
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: ( ) (
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ij ij ij ij ij ij
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ij ij ij ij ij
j j j j

ij ij ij ij ij
j j j

ij ij ij ij
j j j

u u u v

v v

w w

δφ

ψ ψ

ψ φ φ

φ

′′ ′ ′′+ − − + +

′ ′′ ′− − + + −

′′ ′− + + + −

′− + − − =

A A A A A A

A A A A A

A B A A A

A B B B
 

23 43 21 41 22

24 42 44

:

( ) ( )

ij ij ij ij ij
i j j j j

ij ij ij
j j i

w w

w w q y

δ ψ ψ φ φ′ ′ ′′− + − +

′+ − − = −

B B B B B

B B B
  (26) 

 

3. The solution procedure of the equilibrium 
equations 

To solve Eqs. (25), for convenience the following 
state space vectors are introduced: 

 
{ } { } { } { } { } { }
{ } { } { } { } { } { }
{ } { } { } { } { } { }
{ } { }

31 2

5 64

7 8 9

10

,    ,    ( ) ( ) ( )

,    ,    ( ) ( ) ( )

,    ,    ( ) ( ) ( )

( )

XX Xu x u x v x

X XX v x x x

X X Xx x w x

X w x

ψ ψ

φ φ

′= = =

′ ′= = =

′= = =

′=

 

(27)

 

 
Note that in the above relations each of the state space 
variables, intrinsically, is an 1n×  vector (e.g., 
{ } [ ]1 2

T
nu u uu ′ ′ ′=′ K ). Substitution of Eqs. (27) 

into Eqs. (25) results in a system of five coupled first-
order ordinary differential equations which, on the 
other hand, may be presented as: 
 

{ } [ ]{ } { }X T X F= +′   (28) 
 
To solve Eqs. (28), let us assume that ( )iu y , 

( )iv y ,…, and ( )iw y  are chosen so that the bound-
ary conditions at y=0,b are identically satisfied. Next, 
the coefficient matrices [ ]ijA  and [ ]ijB  are found. 
Since these coefficients are constant, Eqs. (28) will be 
five linear ordinary differential equations with con-
stant coefficients. Also, ( )iq x  is found from Eq. (7). 
Now Eqs. (28) may be solved analytically for any 
boundary conditions at x=0,a to yield the solution of 

( )iu x , ( )iv x ,…, and ( )iw x . The general solution of 
Eqs. (28) is given by [32]: 
 

{ } [ ][ ]{ }

[ ][ ] [ ] [ ] { }1 1

0

( )

( ) ( ) ( )
x

Q xUX K

dQ x Q FU U ζζ ζ− −

=

+ ∫
   (29) 

 
where [U] is the matrix of distinct eigenvectors of 
matrix [T] and {K} is a vector of unknown constants 
to be found by imposing the boundary conditions at 
the edges x=0,a. Also, the diagonal matrix [Q] is 
defined as: 
 

101 2[ ] diag( , , , )n xx xQ e e eλλ λ= K    (30) 
 
where ( 1,2, ,10 )k k nλ = K  are the eigenvalues of the 
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coefficient matrix [T] which, in general, must be re-
garded to have complex values. 

Next, we can substitute the obtained general solu-
tion of ( )iu x , ( )iv x ,…, and ( )iw x  into Eqs. (22) to 
find the coefficient matrices [ ]ijA  and [ ]ijB  
which, here, will be constant. The solution procedure 
for Eqs. (26) is completely analogous to the one pre-
sented for Eqs. (25) and therefore, for the sake of 
brevity will not be taken up here. This procedure 
(solving the coupled systems of ordinary differential 
equations) will be continued until the solution is con-
verged. It is to be noted, generally, the initial guesses 
to start iterative procedure are arbitrary functions and 
are not required to satisfy any of the boundary condi-
tions. This latitude for selection of initial assumed 
functions is related to this fact that the boundary con-
ditions are automatically satisfied in the subsequent 
iterations. Also, the iterative essence of the method 
requires that for a specified value of n, the preciseness 
of the converged solution be independent of the form 
of the initial guesses. 
 

4. Numerical results 

Based on the theoretical formulation discussed in 
the preceding sections, a computer program was pro-
vided to solve the bending problems of laminated 
plates. Also, based on the Levy method and within 
the framework of FSDT, two other codes were writ-
ten to analyze general cross-ply and antisymmetric 
angle-ply laminated plates with two opposite edges 
simply supported. Three different numerical exam-
ples are studied in this section to demonstrate the 
validity and accuracy of the present method and its 
capability to analyze laminated plates with various 
laminations and boundary conditions. The results 
obtained from this theory are compared with those 
obtained by the Levy method, for the cases that 
Levy’s solution exists (i.e., for cross-ply and anti-
symmetric angle-ply laminates with at least two sim-
ply supported opposite edges). For other cases that 
there exist no Levy-type solutions, the present results 
are compared with those of finite element analysis as 
well as those presented by Umasree and Bhaskar [13] 
and Chaudhuri and Kabir [22]. 

In all examples, each lamina is assumed to be of 
the same thickness and has the following orthotropic 
material properties in the principal material coordi-
nate system [30]: 
 

1 2 12 13 225 ,     0.5     E E G G E= = =  
23 2 120.2 ,    0.25G E ν= =   (31) 

 
with 2 12 GPaE = . In Eqs. (31) E, G, and ν  denote 
Young’s modulus, shear modulus, and Poisson’s ratio, 
respectively, and the subscripts 1, 2, and 3 indicate 
the on-axis material coordinates. 

Denoting simply supported, clamped and free 
boundary conditions by S, C, and F, a 4-word nota-
tion such as SFSC is employed to show the boundary 
conditions on the four edges of the plate. The 1-4th 
word indicates the boundary conditions on edges x=0, 
y=0, x=a, and y=b respectively. It can be shown that, 
as far as analytical solution is concerned, Levy’s solu-
tion exists only for antisymmetric angle-ply and any 
cross-ply laminated plates if at least two parallel op-
posite edges of the plate have simple supports. More 
specifically, for antisymmetric angle-ply laminates 
the simple support conditions in the first-order shear 
deformation laminated plate theory must, say at x=0,a, 
be [30]: 
 

0S1 type :    0xy xu N M wφ= = = = =   (32) 
 
and also for cross-ply laminates the simple support 
conditions must, say at x=0,a, be [30]: 
 

0S2 type :    0x xN v M wφ= = = = =   (33) 
 

All the numerical results for displacements and 
stresses shown in what follows are presented by 
means of the following non-dimensionalized quanti-
ties: 
 

2 3
2 22 2

3 4
0 0

( , ) ( , ) 10 ,    10E h E hu v u v w w
b q b q

⎛ ⎞⎛ ⎞
= × = ×⎜ ⎟⎜ ⎟

⎝ ⎠ ⎝ ⎠

 
2

2
0

( , , ) ( , , )x y xy x y xy
h

b q
σ σ σ σ σ σ

⎛ ⎞
= ⎜ ⎟

⎝ ⎠

 
0 0

1( , ) ( , ) ,    xz xz xz xz z z
h

bq q
σ σ σ σ σ σ

⎛ ⎞ ⎛ ⎞
= =⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠

  

(34) 

 
where 0q is the intensity of the applied uniform 
transverse load or the amplitude of a double-
sinusoidal transverse load which is defined as: 
 

0 sin sinx yq q
a b
π π

=    (35) 
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Fig. 2. Variations of the (a) axial, (b) lateral, and (c) trans-
verse displacement vs. x at y=b/2 for [45°/0°/-45°]2 laminate 
compared with the Levy-type solution for various sets of 
boundary conditions. 

 
Example 1 
The methodology outlined previously is initially 

applied to the bi-directional bending problem of a six-  

⎯σx(a/2,b/2,z/h)
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⎯σxy(a/4,b/4,z/h)
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h
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Fig. 3. Distributions of the in-plane stresses through-thickness of 
[45°/0°/-45°]2 laminate compared to the Levy-type solution for 
various sets of boundary conditions: (a) σx, (b) σy, and (c) σxy. 

 
layer laminate 2[45 /0 /-45 ]° ° °  subjected to a uniform 
transverse load 0q . It is assumed that two opposite 
edges of the laminate have S1-type of simple supports 
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and the other two edges can each be free, simply sup- 
ported, or clamped, independent of the other. It is also 
assumed that the plate has length-to-width ratio a/b=2 
and width-to-thickness ratio b/h=25. 

Figs. 2(a) and 2(b) show, respectively, the varia-
tions of displacements u  and v  in the bottom sur-
face of the laminate, versus x at y=b/2 for several sets 
of boundary conditions. The variations of transverse 
deflection along the longitudinal centerline of the 
laminated plate, corresponding to three sets of bound-
ary conditions (i.e., SSSS, SCSC, and SFSC), are 
displayed in Fig. 2(c). Also, Figs. 3 and 4 illustrate 
the through-thickness distributions of the in-plane 
and interlaminar stresses, respectively. It is to be 
noted that the interlaminar stresses in this example 
and the subsequent examples are determined by inte-
grating the local equilibrium equations of the three 
dimensional elasticity, instead of computing them 
directly from the constitutive equations (Eqs. 14). The 
above-mentioned figures indicate that there is an ex-
cellent agreement between the results of the present 
method with those obtained by the Levy method as it 
is difficult to distinguish the curves of the present 
method from the curves of the Levy-type method, for 
a specific boundary conditions. 

 
Example 2 
Bending behavior of a symmetric cross-ply square 

laminate s[0 /90 ]° ° clamped or simply supported 
along all its edges was studied by Umasree and 
Bhaskar [13] through an analytical approach. Table 1 
compares the results of the present method with those 
given by Umasree and Bhaskar [13] for the clamped 
laminated plate subjected to a uniform pressure on its 
top surface. It is clearly seen that for all the aspect 
ratios studied, the results of the both methods match 
very well and variations of the aspect ratios do not 
have a significant influence on the accuracy of the 
results. It is noted that the numerical values of 

yσ and xyσ  tabled in this example are computed in 
the 90º layer. 

Bending of a s[0 /90 ]° ° laminate with various 
Levy’s admissible boundary conditions, under uni-
form and double-sinusoidal distributed loads is also 
examined, whose results for a/h=50 are listed in Ta-
bles 2 and 3, respectively. It is to be noted that all the 
simple supports must be assumed to be of type S2. It 
is seen from these tables that there is an outstanding 
agreement between the results of the present method 
and those of the Levy method and Umasree and Bha- 
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Fig. 4. Distributions of the interlaminar stresses through-
thickness of [45°/0°/-45°]2 laminate compared to the Levy-type 
solution for various sets of boundary conditions: (a) σyz, (b) σxz, 
and (c) σz. 

 
skar [13]; however, the precision of the results is af-
fected by the kind of boundary conditions imposed on 
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the edges of the plate. Also, the results presented in 
Tables 2 and 3 generally indicate that in the double-
sinusoidal loading cases the results obtained by the 
present method and the Levy method have a better 
congruity compared to the uniform loading cases. 
Table 4 shows the influence of the numerical value of 
n (the total number of summed terms in Eqs. (1)) on 
the accuracy of the numerical results obtained from 
the present method. The numerical values of dis-
placements and stresses listed in Table 4 have been 
computed for the clamped s[0 /90 ]° ° laminated plate 
with aspect ratio of a/h=50, under a uniformly dis-

tributed load. The present results are compared with 
those given by Umasree and Bhaskar [13]. These 
results indicate that as the number n is increased, the 
accuracy of the results is also increased. However, it 
is observed that the rate of convergence of stresses is 
slower compared with that of displacements. The 
displacements converge to four decimal places with 
n=2 while some stress components need n=5 for this 
convergence.  

 
Example 3 
Finally, consider a [0 /60 ]° °  square laminated 

 
Table 1. Results of the present method and Umasree and Bhaskar [13] for clamped s[0 /90 ]° ° square plate under a uniform pres-
sure. 
 

Method 
a
h

 ,
2 2
a aw⎛ ⎞

⎜ ⎟
⎝ ⎠

 , ,
2 2 2

x

a a h
σ ⎛ ⎞
⎜ ⎟
⎝ ⎠

 , ,
2 2 4

y

a a h
σ ⎛ ⎞
⎜ ⎟
⎝ ⎠

 , ,
4 4 4

xy

a a h
σ ⎛ ⎞
⎜ ⎟
⎝ ⎠

 

Present method 10 0.4650 0.2250 0.2571 -0.0034 
Umasree and Bhaskar [13]   0.4651 0.2251 0.2572 -0.0034 

Present method 20 0.2342 0.2648 0.1623 -0.0032 
Umasree and Bhaskar [13]  0.2342 0.2649 0.1623 -0.0032 

Present method 50 0.1590 0.2848 0.1113 -0.0031 
Umasree and Bhaskar [13]  0.1590 0.2848 0.1113 -0.0031 

Present method 100 0.1475 0.2880 0.1012 -0.0031 
Umasree and Bhaskar [13]  0.1475 0.2880 0.1012 -0.0030 

 
Table 2. Results of the present method, the Levy method, and Umasree and Bhaskar [13] for s[0 /90 ]° ° square plate under a 
uniform pressure (a/h=50). 
 
Method  SSSS CSCS FSFS CSFS CSSS FSSS 
Present method ( / 2, / 2)w a a  0.6833 0.1614 3.8874 1.1861 0.3105 2.6729
Levy’s method  0.6833 0.1614 3.8876 1.1859 0.3105 2.6729
Umasree and Bhaskar [13]  0.6833 - - - - - 

Present method ( / 2, / 2, / 2)
x

a a hσ  0.8228 0.3165 -0.0004 -0.2102 0.4634 0.3094

Levy’s method  0.8228 0.3166 -0.0004 -0.2112 0.4634 0.3091
Umasree and Bhaskar [13]  0.8228 - - - - - 

Present method ( / 2, / 2, / 4)
y

a a hσ  0.3560 0.0456 2.3356 0.6723 0.1312 1.5851

Levy’s method  0.3560 0.0457 2.3358 0.6709 0.1313 1.5848
Umasree and Bhaskar [13]  0.3559 - - - - - 

Present method ( / 4, / 4, / 4)
xy

a a hσ  -0.0078 -0.0021 0.0005 -0.0141 -0.0041 0.0243

Levy’s method  -0.0079 -0.0021 0.0005 -0.0141 -0.0041 0.0243
Umasree and Bhaskar [13]  -0.0079 - - - - - 

Present method ( / 4, / 4,0)
yz

a aσ  0.0303 -0.0345 0.6550 -0.0027 -0.0263 0.6395

Levy’s method  0.0299 -0.0352 0.6550 -0.0029 -0.0269 0.6390

Present method ( / 4, / 4,0)
xz

a aσ  0.2346 0.2966 0.0020 0.4981 0.4138 0.0621

Levy’s method  0.2347 0.2968 0.0019 0.5008 0.4137 0.0622

Present method ( / 4, / 4,0)
z

a aσ  -0.5002 -0.5005 -0.5013 -0.5041 -0.5004 -0.4990
Levy’s method  -0.5005 -0.5005 -0.5075 -0.5003 -0.5005 -0.5005
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plate with aspect ratio of 10, subjected to uniformly 
distributed loading. As it is evident, the Levy method 
cannot be applied to obtain solutions for such a lami-
nation configuration. Here, the numerical results, 
obtained by using the proposed analytical method, are 
presented for such a laminated plate with arbitrary 
combination of boundary conditions. The variations 
of displacement components along the longitudinal 
centerline of the plate are displayed in Fig. 5. Also, 
Figures 6 and 7 show the distributions of in-plane and 
interlaminar stresses through-thickness of the plate, 
respectively. Although there is no restriction, all sim-
ple supports in this example are assumed to be of type 
S1 for the sake of convenience. 

To assess the validity of the results, they are com-
pared with those obtained by employing the commer-
cial finite element package of ANSYS. It is to be 
noted that the laminated plate has been modeled in 

ANSYS by using three-dimensional 20-node layered 
structural solid elements which is proper to model 
thick laminates. What has been shown through Fig-
ures 5, 6 and 7 indicates that the agreement between 
the results of the present method and finite element 
the results of the present method and finite element 
method (FEM) is quite good. The discrepancy be-
tween the present results and those by FEM can be 
referred to the fact that the plate has been considered 
moderately thick. But more discrepancy seen for 
transverse normal stresses also results from the differ-
ent methods used to obtain the stresses. The present 
results for zσ  are determined by substituting the 
interlaminar shear stresses yzσ  and xzσ achieved 
from the constitutive relations into the equilibrium 
equations of three-dimensional elasticity. Accord-
ingly, through-thickness variation of zσ in each lam- 

 
Table 3. Results of the present method and the Levy method for s[0 /90 ]° ° square plate under a double-sinusoidal pressure
(a/h=50). 
 
Method  SSSS CSCS FSFS CSFS CSSS FSSS 

Present method ( / 2, / 2)w a a  0.4337 0.1159 1.9841 0.6062 0.2071 1.3964 
Levy’s method  0.4337 0.1159 1.9841 0.6062 0.2071 1.3964 
Present method ( / 2, / 2, / 2)

x
a a hσ  0.5382 0.2361 0.1330 0.0117 0.3228 0.2862 

Levy’s method  0.5382 0.2361 0.1330 0.0117 0.3228 0.2862 
Present method ( / 2, / 2, / 4)

y
a a hσ  0.2705 0.0727 1.2261 0.3745 0.1294 0.8639 

Levy’s method  0.2705 0.0727 1.2261 0.3745 0.1294 0.8639 
Present method ( / 4, / 4, / 4)

xy
a a hσ  -0.0053 -0.0019 -0.0010 -0.0077 -0.0032 0.0105 

Levy’s method  -0.0053 -0.0019 -0.0010 -0.0077 -0.0032 0.0105 
Present method ( / 4, / 4,0)

yz
a aσ  0.0693 0.0137 0.3777 0.0288 0.0189 0.3716 

Levy’s method  0.0694 0.0137 0.3777 0.0288 0.0189 0.3716 
Present method ( / 4, / 4,0)

xz
a aσ  0.1695 0.1962 0.0577 0.3090 0.2679 0.0861 

Levy’s method  0.1695 0.1962 0.0577 0.3090 0.2679 0.0861 
Present method ( / 4, / 4,0)

z
a aσ  -0.2500 -0.2501 -0.2500 -0.2500 -0.2500 -0.2500 

Levy’s method  -0.2500 -0.2500 -0.2500 -0.2500 -0.2500 -0.2500 
 
Table 4. Non-dimensionalized displacement and stress components versus n* for s[0 /90 ]° ° square plate under a uniform pres-
sure (a/h=50). 
 

 n=1 n=2 n=3 n=4 n=5 Umasree and Bhaskar [13] 
( / 4, / 2, / 2)u a a h  -0.2101 -0.2122 -0.2122 -0.2122 -0.2122 - 
( / 2, / 4, / 2)v a a h  -0.2129 -0.2162 -0.2162 -0.2162 -0.2162 - 

( / 2, / 2)w a a  0.1583 0.1590 0.1590 0.1590 0.1590 0.1590 
( / 2, / 2, / 2)

x
a a hσ  0.2785 0.2842 0.2847 0.2847 0.2848 0.2848 

( / 2, / 2, / 4)
y

a a hσ  0.1083 0.1110 0.1112 0.1112 0.1113 0.1113 
( / 4, / 4, / 4)

xy
a a hσ  -0.0030 -0.0031 -0.0031 -0.0031 -0.0031 -0.0031 
( / 4, / 4,0)

yz
a aσ  0.0441 0.0382 0.0377 0.0377 0.0377 - 

( / 4, / 4,0)
xz

a aσ  0.2116 0.2040 0.2040 0.2040 0.2042 - 
( / 4, / 4,0)

z
a aσ  0.4808 0.4872 0.4980 0.4978 0.4998 - 

* The total number of summed terms in the assumed separated displacement field 
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Fig. 5. Variations of the (a) axial, (b) lateral, and (c) trans-
verse displacement vs. x at y=b/2 for [0°/60°] laminate com-
pared to the results of FEM and Chaudhuri and Kabir [22]. 
 
ina is obtained linearly. 

In addition, the present results of displacement 
components for the case of fully clamped laminated 
plate are compared with those given by Chaudhuri 
and Kabir [22] in Fig. 5. It is observed that the distri- 
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Fig. 6. Distributions of the in-plane stresses through-thickness 
of [0°/60°] laminate compared to the results of FEM for 
various sets of boundary conditions: (a) σx, (b) σy, and (c) σxy. 
 
butions of displacement components given by 
Chaudhuri and Kabir [22] are close to those obtained 
from the present method and FEM; nevertheless, their  
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Fig. 7. Distributions of the interlaminar stresses through-
thickness of [0°/60°] laminate compared to the results of 
FEM for various sets of boundary conditions: (a) σyz, (b) σxz, 
and (c) σz. 

results do not possess a sufficient accuracy. 
 

5. Conclusions 

A semi-analytical solution based on idea of the 
EKM has been developed to study the bending behav-
ior of laminated composite plates. Utilizing the multi-
term version of the EKM enables us to accurately 
analyze laminated plates with arbitrary lamination 
and boundary conditions. Also, the procedure used is 
simple and straightforward and can, therefore, be 
adopted in developing higher-order shear deformation 
and layerwise laminated plate theories. The Levy-
type solutions for general cross-ply and antisymmet-
ric angle-ply laminated plates, based on FSDT are 
used as a benchmark. Several numerical examples, 
including laminated plates with cross-ply, antisym-
metric angle-ply, and general laminations with vari-
ous sets of boundary condition, are studied. The nu-
merical results are compared with those of the Levy-
type solutions and also with those of the published 
results and finite element analysis when there exist no 
Levy-type solutions. All the numerical results demon-
strate the capability of the proposed method for the 
analysis of laminated plates with arbitrary lamination 
and boundary conditions as well as its excellent accu-
racy. A convergence study has been performed to 
investigate the effect of number of summed terms in 
the assumed separated displacement field (n) on the 
preciseness of the numerical results obtained from the 
present method. It is generally found that increasing n 
improves the accuracy of the results, and usually by 
using five terms a desired accuracy for the displace-
ments and stresses is obtained. 
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